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Question 1

Consider a Riemannian manifold with a covariantly constant metric gq(x)
and Christoffel symbols I'¢, (z) = I'¢ ().

(1.1) Use the fact that the metric is covariantly constant, i.e.

vc‘gab('x) = 0’ (1>

to solve for the Christoffel symbols in terms of the metric.

(1.2) Consider a curve x%(s) with affine parameter s. The geodesic equation
for this curve is given by

i 4-T¢ i =0, (2)
where the dot indicates differentiation with respect to s. Show that the
geodesic equation (2) follows from the Euler-Lagrange equations correspond-
ing to the Lagrangian

L= 3i%4" gan() . (3)

(1.3) Consider the metric (¢ = 1)

ds® = dt* —dz* — L*(e®Pda® + e dy?)
= dudv — L*(e*dz® + ¢ *dy?), (4)




with w =t — 2,0 =t + z and L = L(u),3 = [(u) arbitrary functions of
u. This metric describes an exact plane gravitational wave solution to the
Einstein equations. Calculate the Christoffel symbols corresponding to the
metric (4) in (u,v,z,y) coordinates.

(1.4) Show that the curves
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arc timelike geodesics.

Question 2

Consider a free test particle (massive or massless) moving along a geodesic
curve in the Schwarzschild metric (¢ = 1)

2 2
st = (1= 2 = (1 ) a2 sntodg?), (o)

which for r > 2m describes the space-time outside a black hole. Using
spherical symmetry we can restrict ourselves to the equatorial plane 6 = 5

(2.1) The metric (6) is independent of the coordinates t and ¢. Use this to
show that the quantities
£=gut" and L= ggt" (7)

are constants of motion. Note: ## in (7) represents the derivative of z* with
respect to the proper time 7 of the geodesic curve 2#(7). What is the physical
interpretation of £ and £ 7

(2.2) Proof the following relation

f2:82—<1—2—771—><(5+%2—>, (8)

T r

where

1 for massive particles ,
0= . (9)
0 for massless particles .

2



The relation (5) resembles the energy relation for a particle with mass 2
and energy £2 that moves in a potential

Vir) = (1 _ ET> (5+ ‘f—j) (10)

r

(2.3) Make a graph of the potential V (r) for massless particles and determine
for which value of » the potential is maximum. For which value of r is circular
motion of light possible? Is this circular orbit stable?

(2.4) Consider the potential for massive particles. For which values of £ > 0
has the potential V() no extrema? For larger values of £ the potential V (r)
has a maximum and a minimum. Make a graph of the potential V(7). Show
that only for r > 6m stable circular orbits for massive particles are possible.

Question 3

The Robertson-Walker metric for & = 1 can be written in the form (we take
c=1)

ds? = dt* — R(t)*{dx* + sin®x(d6? + sin®0d¢*)} . (11)
(3.1) Show that for geodesics with 8 = ¢ = 0 the quantity

R(t)*x (12)

is constant. The dot indicates differentiation with respect to an affine pa-
rameter.

(3.2) Show that for lightlike geodesics with f=¢=0

dx

R@)ZE =

+1. (13)

We consider a closed Friedmann universe. The function R(t) corresponding
to such a universe satisfies the differential equation



AR\ A2
- 1= — 14
(dt) + R’ (14)

where A is a constant. We impose the boundary condition that R = 0 for
L =0.

(3.3) Show that the solution of the differential equation (14) is given by the
equations

R = L1A*1 —cosy),

2

t = 1A*(Y —siny), (15)
where 1) is a parameter. Give the graph of the function R(f).

(3.4) At a time t; << A? a foton is emitted from a point P and this foton
starts following a geodesic in the plane with 8 = ¢ == 7/2. The point P has
constant spacclike coordinates x = 0 and 6 = ¢ = 7 /2. Calculate the time
it takes for the foton to return to P.



